Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38662292

RESUMEN

In this study, the effect of the cell density of monolithic catalysts was investigated and further mathematically modeled on cordierite supports used in CO2 methanation. Commercial cordierite monoliths with 200, 400, and 500 cpsi cell densities were coated by immersion into an ethanolic suspension of Ni/CeO2 active phase. SEM-EDS analysis confirmed that, owing to the low porosity of cordierite (surface area < 1 m2 g-1), the Ni/CeO2 diffusion into the walls was limited, especially in the case of low and intermediate cell density monoliths; thus, active phase was predominantly loaded onto the channels' external surface. Nevertheless, despite the larger exposed surface area in the monolith with high cell density, which would allow for better distribution and accessibility of Ni/CeO2, its higher macro-pore volume resulted in some introduction of the active phase into the walls. As a result, the catalytic evaluation showed that it was more influenced by increments in volumetric flow rates. The low cell density monolith displayed diffusional control at flow rates below 500 mL min-1. In contrast, intermediate and high cell density monoliths presented this behavior up to 300 mL min-1. These findings suggest that the interaction reactants-catalyst is considerably more affected by a forced non-uniform flow when increasing the injection rate. This condition reduced the transport of reactants and products within the catalyst channels and, in turn, increased the minimum temperature required for the reaction. Moreover, a slight diminution of selectivity to CH4 was observed and ascribed to the possible formation of hot spots that activate the reverse water-gas shift reaction. Finally, a mathematical model based on fundamental momentum and mass transfer equations coupled with the kinetics of CO2 methanation was successfully derived and solved to analyze the fluid dynamics of the monolithic support. The results showed a radial profile with maximum fluid velocity located at the center of the channel. A reactive zone close to the inlet was obtained, and maximum methane production (4.5 mol m-3) throughout the monolith was attained at 350 °C. Then, linear streamlines of the chemical species were developed along the channel.

2.
Environ Sci Pollut Res Int ; 31(11): 16453-16472, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321273

RESUMEN

The synthesis and characterization of a hydrochar/CeO2 composite along with its evaluation in methylene blue degradation under visible light are presented. The methodology consisted of a single-pass hydrothermal method, having as synthesis conditions 9 h of reaction time, 210 °C, autogenous pressure, and a biomass/CeO2 ratio of 100:1. The composite characterization revealed good dispersion of CeO2 in the carbonaceous matrix and significant synergy in the composite activation using visible irradiation. The photodegradation experiments showed an efficiency of 98% for white LED light, 91% for UV light, 96% for solar irradiation, and 85% for blue LED light using as conditions pH 7.0, 50 mg of composite, 50 mL of solution, 10 mg/L of dye initial concentration, and 120 min of contact time. Meanwhile, the reusability experiments evidenced a reuse capacity of up to five times with a constant photodegradation efficiency (99%); moreover, it was determined that the presence of electrolytes at pH below 7.0 during degradation negatively affected methylene blue degradation. Finally, the results of this work demonstrate that the hydrochar/CeO2 composite can be synthesized by a green method and used for the efficient treatment of water contaminated with methylene blue.


Asunto(s)
Luz , Azul de Metileno , Azul de Metileno/química , Rayos Ultravioleta , Fotólisis , Luz Azul
3.
Environ Res ; 250: 118559, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38412912

RESUMEN

Tequila production in Mexico generates large quantities of agave bagasse (AB), a waste that could be used more efficiently. AB has a high cellulose, hemicellulose, and lignin content, which allows its use as a precursor for synthesizing carbonaceous materials. In the present work, the synthesis of activated carbon impregnated with Fe2+ (AG-Fe-II) and Fe3+ (AG-Fe-III) was carried out and evaluated in a hybrid adsorption-AOP (advanced oxidation process) methodology for sulfamethazine removal (SMT). The materials were characterized before and after the process to determine their morphological, textural, and physicochemical properties. Subsequently, the effect of the main operational variables (pH, initial SMT concentration, mass, and activator dosage) on the hybrid adsorption-degradation process was studied. The Fenton-like reaction was selected as the AOP for the degradation step, and potassium persulfate (K2S2O8) was used as an activating agent. The main iron crystallographic phases in AG-Fe-II were FeS, with a uniform distribution of iron particles over the material's surface. The main crystallographic phase for AG-Fe-III was Fe3O4. The hybrid process achieved 61% and 78% removal efficiency using AG-Fe-II and AG-Fe-III samples, respectively. The pH and initial SMT concentration were the most critical factors for removing SMT from an aqueous phase. Finally, the material was successfully tested in repeated adsorption-degradation cycles.

4.
Environ Res ; 246: 118162, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218517

RESUMEN

This study investigated the application of adsorption with activated carbons (ACs) and photodegradation to reduce the concentration of triclosan (TCS) in aqueous solutions. Concerning adsorption, ACs (Darco, Norit, and F400) were characterised and batch experiments were performed to elucidate the effect of pH on equilibrium. The results showed that at pH = 7, the maximum adsorption capacity of TCS onto the ACs was 18.5 mg g-1 for Darco, 16.0 mg g-1 for Norit, and 15.5 mg g-1 for F400. The diffusional kinetic model allowed an adequate interpretation of the experimental data. The effective diffusivity varied and increased with the amount of TCS adsorbed, from 1.06 to 1.68 × 10-8 cm2 s-1. In the case of photodegradation, it was possible to ensure that the triclosan molecule was sensitive to UV light of 254 nm because the removal was over 80 % using UV light. The removal of TCS increased in the presence of sulfate radicals. It was possible to identify 2,4-dichlorophenol as one of the photolytic degradation products of triclosan, which does not represent an environmental hazard at low concentrations of triclosan in water. These results confirm that the use of AC Darco, Norit, and F400 and that photodegradation processes with UV light and persulfate radicals are effective in removing TCS from water, reaching concentration levels that do not constitute a risk to human health or environmental hazard. Both methods effectively eliminate pollutants with relatively easy techniques to implement.


Asunto(s)
Triclosán , Contaminantes Químicos del Agua , Humanos , Triclosán/química , Carbón Orgánico/química , Adsorción , Fotólisis , Agua , Contaminantes Químicos del Agua/análisis
5.
Chemosphere ; 351: 141216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224748

RESUMEN

Sulfamethoxazole and metronidazole are emerging pollutants commonly found in surface water and wastewater. These compounds have a significant environmental impact, being necessary in the design of technologies for their removal. Recently, the advanced oxidation process has been proven successful in the elimination of this kind of compounds. In this sense, the present work discusses the application of UV/H2O2 and ozonation for the degradation of both molecules in single and binary systems. Experimental kinetic data from O3 and UV/H2O2 process were adequately described by a first and second kinetic model, respectively. From the ANOVA analysis, it was determined that the most statistically significant variables were the initial concentration of the drugs (0.03 mmol L-1) and the pH = 8 for UV/H2O2 system, and only the pH (optimal value of 6) was significant for degradation with O3. Results showed that both molecules were eliminated with high degradation efficiencies (88-94% for UV/H2O2 and 79-98% for O3) in short reaction times (around 30-90 min). The modeling was performed using a quadratic regression model through response surface methodology representing adequately 90 % of the experimental data. On the other hand, an artificial neural network was used to evaluate a non-linear multi-variable system, a 98% of fit between the model and experimental data was obtained. The identification of degradation byproducts was performed by high-performance liquid chromatography coupled to a time mass detector. After each process, at least four to five stable byproducts were found in the treated water, reducing the mineralization percentage to 20% for both molecules.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Inteligencia Artificial , Peróxido de Hidrógeno/química , Calidad del Agua , Rayos Ultravioleta , Oxidación-Reducción , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Ozono/química
6.
Environ Res ; 243: 117871, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086499

RESUMEN

This work proposes a rigorous mathematical model capable of reproducing the adsorption process in dynamic regime on advanced monoliths geometries. For this, four bed geometries with axisymmetric distribution of channels and similar solid mass were proposed. In each geometry a different distribution of channels was suggested, maintaining constant the bed dimensions of 15 cm high and 5 cm radius. The mathematical modeling includes mass and momentum transfer phenomena, and it was solved with the COMSOL Multiphysics software using mass transfer parameters published in the literature. The overall performance of the column was evaluated in terms of breakthrough (CA/CA0 = 0.1) and saturation times (CA/CA0 = 0.9). The mass and velocity distributions obtained from the proposed model show good physical consistency with what is expected in real systems. In addition, the model proved to be easy to solve given the short convergence times required (2-4 h). Modifications were made to the bed geometry to achieve a better use of the adsorbent material which reached up to 80%. The proposed bed geometries allow obtaining different mixing distributions, in such a way that inside the bed a thinning of the boundary layer is caused, thus reducing diffusive effects at the adsorbent solid-fluid interface, given dissipation rates of about 323 × 10-11 m2/s3. The bed geometry composed of intersecting rings deployed the best performance in terms of usage of the material adsorbent, and acceptable hydrodynamical behavior inside the channels (maximum fluid velocity = 35.4 × 10-5 m/s and drop pressure = 0.19 Pa). Based on these results, it was found that it is possible to reduce diffusional effects and delimit the mass transfer zone inside the monoliths, thus increasing the efficiency of adsorbent fixed beds.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Modelos Teóricos , Matemática , Difusión
7.
Environ Res ; 238(Pt 2): 117196, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778603

RESUMEN

Chlorpheniramine (CPM) and Ciprofloxacin (CIP) adsorption onto a granular (GAC) and pelletized activated carbon (PAC) analyzing the physicochemical mechanisms involved using the carbon's characterization were studied. Adsorption isotherm studies were performed at temperatures of 25 °C at pH values of 4, 7 and 9 and at 45 °C at a pH of 7. The characterization demonstrated that GAC has a predominantly acid character due to its predominantly negative surface charge and acidic site concentration alongside the characteristic bands detected in the X-ray Photoemission Spectroscopy (XPS) study. On the other hand, PAC presented a mostly basic character due to its positive surface charge and basic site concentrations. The adsorption isotherm studies demonstrated that the Freundlich isotherm better described the equilibrium data with an average deviation percentage of 7.45 and 6.74 for GAC and PAC. The temperature and desorption studies demonstrated that the adsorption process occurs through a chemisorption mechanism, and the pH study alongside the GAC and PAC characterization demonstrated that the mechanisms involved are a combination of electrostatic interactions and pi-pi interactions between the CPM and CIP molecules and the carbon's surface. These results demonstrate that the adsorption process of these pharmaceutical compounds is done through a combination of physical and chemical interactions.


Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Ciprofloxacina/química , Carbón Orgánico/química , Clorfeniramina , Contaminantes Químicos del Agua/química , Cinética , Adsorción
8.
Artículo en Inglés | MEDLINE | ID: mdl-37704815

RESUMEN

In the present research, the presence of water hyacinth (Eichhornia crassipes) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018-2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g-1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pHPZC). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.

9.
Environ Sci Pollut Res Int ; 30(39): 90741-90756, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37462867

RESUMEN

Water pollution is a current global concern caused by emerging pollutants like nonylphenol (NP). This endocrine disruptor cannot be efficiently removed with traditional wastewater treatment plants (WTPs). Therefore, this work aimed to evaluate the adsorption influence of molecularly imprinted polymers (MIPs) on the oxidative degradation (ozone and ultraviolet irradiations) of 4-nonylphenol (4-NP) and its by-products as a coadjuvant in WTPs. MIPs were synthesized and characterized; the effect of the degradation rate under system operating conditions was studied by Box-Behnken response surface design of experiments. The variables evaluated were 4-NP concentration, ozone exposure time, pH, and MIP amount. Results show that the MIPs synthesized by co-precipitation and bulk polymerizations obtained the highest retention rates (> 90%). The maximum adsorption capacities for 4-NP were 201.1 mg L-1 and 500 mg L-1, respectively. The degradation percentages under O3 and UV conditions reached 98-100% at 120 s of exposure at different pHs. The degradation products of 4-NP were compounds with carboxylic and ketonic acids, and the MIP adsorption was between 50 and 60%. Our results present the first application of MIPs in oxidation processes for 4-NP, representing starting points for the use of highly selective materials to identify and remove emerging pollutants and their degradation by-products in environmental matrices.


Asunto(s)
Contaminantes Ambientales , Impresión Molecular , Ozono , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Polímeros/química , Estrés Oxidativo , Adsorción
10.
Artículo en Inglés | MEDLINE | ID: mdl-37391564

RESUMEN

The development of bifunctional hybrid materials based on natural clays and layered double hydroxide (LDH) and their application on the simultaneous adsorption of Cd(II) and As(V) was investigated in this work. Two different synthesis routes, in situ and assembly, were employed to obtain the hybrid materials. Three types of natural clays, namely bentonite (B), halloysite (H), and sepiolite (S), were used in the study. These clays are characterized by a laminar, tubular, and fibrous structural arrangement, respectively. The physicochemical characterization results indicate that the hybrid materials were formed through interactions between the Al-OH and Si-OH groups present in the natural clays, and the Mg-OH and Al-OH groups present in the LDH for both synthesis routes. However, the "in situ" route yields a more homogenous material because the LDH formation is performed on the natural clay surface. The hybrid materials showed an anion and cation exchange capacity up to 200.7 meq/100 g and an isoelectric point near 7. The arrangement of natural clay has no impact on the properties of hybrid material but influences the adsorption capacity. The adsorption of Cd(II) onto hybrid materials was enhanced in comparison with natural clays, obtaining adsorption capacities of 80, 74, 65, and 30 mg/g for 15:1 (LDH:H)INSITU, 1:1 (LDH:S)INSITU, 1:1 (LDH:B)INSITU, and 1:1 (LDH:H)INSITU, respectively. The adsorption capacities of hybrid materials to adsorb As(V) were between 20 and 60 µg/g. The 15:1 (LDH:H)INSITU sample showed the best adsorption capacity being ten folds greater than halloysite and LDH. In all cases, the hybrid materials showed a synergistic effect for Cd(II) and As(V) adsorption. The adsorption study of Cd(II) onto hybrid materials showed that the primary adsorption mechanism is cation exchange between the interlayer cations in natural clay and Cd(II) in the aqueous solution. The adsorption of As(V) showed that the adsorption mechanism is attributed to anion exchange between CO23- in the interlayer space of LDH and H2ASO4- in the solution. The simultaneous adsorption of As (V) and Cd (II) shows that, during the As(V) adsorption, there is no competition by the adsorption sites. Still, the adsorption capacity towards Cd(II) was enhanced 1.2-folds. This study ultimately revealed that the arrangement of clay has a significant influence on the adsorption capacity of the hybrid material. This can be attributed to the similar morphology between the hybrid material and natural clays, as well as the important diffusion effects observed in the system.

11.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677602

RESUMEN

This study is aimed at the analysis of the pyrolysis kinetics of Nanche stone BSC (Byrsonima crassifolia) as an agro-industrial waste using non-isothermal thermogravimetric experiments by determination of triplet kinetics; apparent activation energy, pre-exponential factor, and reaction model, as well as thermodynamic parameters to gather the required fundamental information for the design, construction, and operation of a pilot-scale reactor for the pyrolysis this lignocellulosic residue. Results indicate a biomass of low moisture and ash content and a high volatile matter content (≥70%), making BCS a potential candidate for obtaining various bioenergy products. Average apparent activation energies obtained from different methods (KAS, FWO and SK) were consistent in value (~123.8 kJ/mol). The pre-exponential factor from the Kissinger method ranged from 105 to 1014 min-1 for the highest pyrolytic activity stage, indicating a high-temperature reactive system. The thermodynamic parameters revealed a small difference between EA and ∆H (5.2 kJ/mol), which favors the pyrolysis reaction and indicates the feasibility of the energetic process. According to the analysis of the reaction models (master plot method), the pyrolytic degradation was dominated by a decreasing reaction order as a function of the degree of conversion. Moreover, BCS has a relatively high calorific value (14.9 MJ/kg) and a relatively low average apparent activation energy (122.7 kJ/mol) from the Starink method, which makes this biomass very suitable to be exploited for value-added energy production.

12.
Molecules ; 27(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014346

RESUMEN

Pollution by dyes and heavy metals is one of the main concerns at the environmental level due to their toxicity and inefficient elimination by traditional water treatment. Orange peel (OP) without any treatment was applied to effectively eliminate methylene blue (MB) and cadmium ions (Cd2+) in mono- and multicomponent systems. Although the single adsorption processes for MB and Cd2+ have been investigated, the effects and mechanisms of interactions among multicomponent systems are still unclear. Batch experiments showed that in monocomponent systems, the maximum adsorption capacities were 0.7824 mmol g-1 for MB and 0.2884 mmol g-1 for Cd2+, while in multicomponent systems (Cd2+ and MB), both contaminants competed for the adsorption sites on OP. Particularly, a synergic effect was observed since the adsorption capacity of Cd2+ increased compared to the monocomponent system. Results of desorption and adsorbent reuse confirmed that the adsorbent presents good regeneration performance. The low cost of this material and its capacity for the individual or simultaneous removal of Cd2+ and MB in aqueous solutions makes it a potential adsorbent for polluted water treatment processes.


Asunto(s)
Citrus sinensis , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cadmio , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno , Aguas Residuales , Purificación del Agua/métodos
13.
Environ Sci Pollut Res Int ; 29(30): 45885-45902, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35149949

RESUMEN

In this study, a series of molecularly imprinted polymers (MIPs) have been synthesized using separately diclofenac, naproxen, and ibuprofen as templates with three different polymerization approaches. Two functional monomers, methacrylic acid (MAA) and 2-vinylpyridine (2-VP), were tested and ethylene glycol dimethacrylate (EGDMA) was used as crosslinker; also, template-free polymers (NIPs) were synthesized. It was found that the MIP with the highest retention percentage for diclofenac was the one prepared by the emulsion approach and with MAA (98.3%); for naproxen, the one prepared by the bulk polymerization with MAA (99%); and for ibuprofen, the one synthesized by bulk with 2-VP (97.7%). These three MIPs were characterized by scanning electron microscopy, thermogravimetric test, Fourier transform infrared, specific area measurements, and surface charge. It was found that the emulsion method allowed particle size control, while the bulk method gave heterogeneous particles. The three evaluated MIPs exhibited thermal stability up to 300 °C, and it was observed that 2-VP confers greater stability to the material. From the BET analysis, it was demonstrated that the MIPs and NIPs evaluated are mesoporous materials with a pore size between 10 and 20 nm. In addition, the monomer influenced the surface charge of the material, since the MAA conferred an acidic point of zero charge (PZC), while the 2-VP conferred a PZC of basic character. Through adsorption isotherms, it was determined  that there is a higher adsorption capacity of the MIPs at acidic pH following a pseudo-second-order kinetic model. Finally, the MIPs were used to determine the non-steroidal anti-inflammatory drugs (NSAIDs) understudy in San Luis Potosí, México, wastewater, finding concentrations of 0.642, 0.985, and 0.403 mg L-1 for DCF, NPX, and IBP, respectively.


Asunto(s)
Impresión Molecular , Adsorción , Antiinflamatorios no Esteroideos/análisis , Diclofenaco/análisis , Emulsiones , Ibuprofeno , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , Naproxeno/análisis , Aguas Residuales/análisis
14.
Environ Sci Pollut Res Int ; 29(18): 26297-26311, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34851488

RESUMEN

In this work, the potential of activated carbon to remove caffeic and chlorogenic acids in aqueous solution was investigated. The study focused on evaluating the single and binary adsorption equilibrium, as well as investigating the mass transfer resistances present during the process by applying diffusional models for a future scale-up of the process. For both compounds, the single adsorption equilibrium was studied at pH values of 3, 5, and 7. The experimental adsorption isotherms were interpreted using the Langmuir and Freundlich models, obtaining maximum adsorption capacities of 1.33 and 1.62 mmol/g for caffeic and chlorogenic acid, respectively. It was found that the adsorption mechanisms for both compounds were derived from π-π, electrostatic, and H-bonding interactions. Also, the binary adsorption equilibrium was performed, and the experimental data were interpreted using the extended multicomponent Langmuir model. The results evidenced that the binary adsorption of caffeic acid and chlorogenic acid is antagonistic in nature. Finally, the experimental adsorption rate data were interpreted by an external mass transport model and a diffusional model, finding that the overall adsorption rate is governed by intraparticle diffusion. Moreover, the surface and pore volume diffusion mechanisms were meaningful.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Ácido Clorogénico , Difusión , Cinética , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
15.
Materials (Basel) ; 16(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36614347

RESUMEN

In the present research work, the use of agro-industrial waste such as agave bagasse from the tequila industry was carried out. The agave bagasse was treated to obtain biosorbent and hydrochar materials. Direct Blue 86 was used as an adsorbate model to evaluate the performance of both materials. The adsorption studies showed an adsorption capacity of 6.49 mg g−1 in static and 17.7 mg g−1 in dynamic, associated with a physisorption process between functional groups of the material and the dye. The characterization of the biosorbent showed that the material was mainly composed of macroporous fibers with a surface area <5.0 m2 g−1. Elemental analysis showed a majority composition of C (57.19 wt%) and O (37.49 wt%). FTIR and XPS analyses showed that the material had C-O, C=O, -OH, O-C=O, and -NH2 surface groups. RAMAN and TGA were used to evaluate the composition, being cellulose (40.94%), lignin (20.15%), and hemicellulose (3.35%). Finally, the life-cycle assessment at a laboratory scale showed that the proposed biosorbent presents a 17% reduction in several environmental aspects compared to hydrochar, showing promise as an eco-friendly and highly efficient method for the remediation of water contaminated with dye, as well as being a promising alternative for the responsible management of solid waste generated by the tequila industry.

16.
Nanomaterials (Basel) ; 11(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069187

RESUMEN

This study focuses on evaluating the volumetric hydrogen content in the gaseous mixture released from the steam catalytic gasification of n-C7 asphaltenes and resins II at low temperatures (<230 °C). For this purpose, four nanocatalysts were selected: CeO2, CeO2 functionalized with Ni-Pd, Fe-Pd, and Co-Pd. The catalytic capacity was measured by non-isothermal (from 100 to 600 °C) and isothermal (220 °C) thermogravimetric analyses. The samples show the main decomposition peak between 200 and 230 °C for bi-elemental nanocatalysts and 300 °C for the CeO2 support, leading to reductions up to 50% in comparison with the samples in the absence of nanoparticles. At 220 °C, the conversion of both fractions increases in the order CeO2 < Fe-Pd < Co-Pd < Ni-Pd. Hydrogen release was quantified for the isothermal tests. The hydrogen production agrees with each material's catalytic activity for decomposing both fractions at the evaluated conditions. CeNi1Pd1 showed the highest performance among the other three samples and led to the highest hydrogen production in the effluent gas with values of ~44 vol%. When the samples were heated at higher temperatures (i.e., 230 °C), H2 production increased up to 55 vol% during catalyzed n-C7 asphaltene and resin conversion, indicating an increase of up to 70% in comparison with the non-catalyzed systems at the same temperature conditions.

17.
Artículo en Inglés | MEDLINE | ID: mdl-34086520

RESUMEN

Ibuprofen degradation and energy generation in a single-chamber Microbial Fuel Cell (MFC) were evaluated using a bioanode fabricated from devil fish bone char (BCA) synthesized by calcination in air atmosphere. Its performance was compared with conventional carbon felt (CF). Bone char textural properties were determined by nitrogen adsorption. Before and after, the bacterial colonization on the materials was analyzed by environmental scanning electron microscopy. Energy generation was evaluated by electrochemical techniques as open-circuit potential, linear sweep voltammetry, and electrochemical impedance spectroscopy. Ibuprofen degradation was analyzed by High-Performance Liquid Chromatography-Ultraviolet, and the chemical oxygen demand (COD) removal was measured. Results showed a specific area of 136 m2/g for BCA, having enough space to immobilize microorganisms. The micrographs confirmed the biofilm formation on the electrode materials. Over the 14 days, MFC with BCA reached a maximum power density of 4.26 mW/m2, 175% higher than CF, and an electron transfer resistance 2.1 times lower than it. This coincides with the COD removal and ibuprofen degradation efficiencies, which were 43.6% and 34% for BCA and 31.8% and 27% for CF. Hence, these findings confirmed that BCA in MFC could provide an alternative electrode material for ibuprofen degradation and energy generation.


Asunto(s)
Fuentes de Energía Bioeléctrica , Análisis de la Demanda Biológica de Oxígeno , Carbono , Electricidad , Electrodos , Ibuprofeno
18.
Environ Sci Pollut Res Int ; 28(18): 23204-23219, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33439444

RESUMEN

In the current work, a deep study to understand the adsorption phenomena occurring in single and multicomponent systems was conducted by using spectroscopic characterization, and computational tools. The experimental results showed that the adsorption capacity of chili seed is higher for Pb2+ (48 mg/g) than Cu2+ (4.1 mg/g) ions in single systems. However, the adsorption study in multicomponent systems provides important conclusions of the concentration effect of the metal ions, showing a significant antagonistic and competitive effect of both ions under equivalent concentrations of them (qPb2+ is 56% reduced) or high concentration of Pb2+ (qCu2+ is 50% reduced). Computational results correlated well with the experimental ones and evidenced all interactions proposed from spectroscopy results, accounting for the occurrence of complexation and electrostatic mechanisms between metal ions and the surface oxygenated functional groups (hydroxyl, carboxyl, and carboxylate) onto chili seed. Chemistry quantum descriptors supported the reactivity behavior of the chemical species implicated. All results evidenced that Pb2+ and Cu2+ adsorption on chili seed surface is governed by the occurrence of combined ionic exchange, π-interaction, complexation, and electrostatic attraction.


Asunto(s)
Cobre , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Iones , Cinética , Plomo , Contaminantes Químicos del Agua/análisis
19.
ACS Appl Mater Interfaces ; 12(49): 54573-54584, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33256401

RESUMEN

Three-dimensional (3D)-printed catalysts are being increasingly studied; however, most of these studies focus on the obtention of catalytically active monoliths, and thus traditional channeled monolithic catalysts are usually obtained and tested, losing sight of the advantages that 3D-printing could entail. This work goes one step further, and an advanced monolith with specifically designed geometry has been obtained, taking advantage of the versatility provided by 3D-printing. As a proof of concept, nonchanneled advanced monolithic (NCM) support, composed of several transversal discs containing deposits for active phase deposition and slits through which the gas circulates, was obtained and tested in the CO-PrOx reaction. The results evidenced that the NCM support showed superior catalytic performance compared to conventional channeled monoliths (CMs). The region of temperature in which the active phase can work under chemical control, and thus in a more efficient way, is increased by 31% in NCM compared to the powdered or the CM sample. Turbulence occurs inside the fluid path through the NCM, which enhances the mass transfer of reagents and products toward and from the active sites to the fluid bulk favoring the chemical reaction rate. The nonchanneled monolith also improved heat dispersion by the tortuous paths, reducing the local temperature at the active site. Thus, the way in which reactants and products are transported inside the monoliths plays a crucial role, and this is affected by the inner geometry of the monoliths.

20.
Environ Sci Pollut Res Int ; 27(33): 41609-41622, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32691321

RESUMEN

In this work, the degradation of sulfamethazine (SMT), sulfadiazine (SMD), and sulfamethoxazole (SMX) by using UV light, UV/H2O2, and UV/S2O8-2 was analyzed. Direct photolysis was studied by varying the lamp power and the solution pH. DFT calculations were carried out to corroborate the efficiency of the degradation as a function of the solution pH. The variation of the apparent rate constant, kap, was determined in the indirect photolysis by employing an experimental Box-Behnken-type response surface design. The results evidenced that SMX can be efficiently degraded by applying UV radiation independent of the operating conditions. Nevertheless, the quantum yields for SMT and SMD were close to zero, indicating a low energy efficiency for their photochemical transformation. The effect of the solution pH showed that the photodegradation of sulfonamides depends both on the amount of radiation absorbed as the electronic density. Calculations based on density functional theory and supported by the quantum theory of atoms in molecules allowed to describe fragmentation patterns in the systems under study, proving the lability of S14-C2, N17-C18, and N22-O22 bonds, for SMT, SMD, and SMX, respectively. From response surface methodology, four statistically reliable equations were obtained to determine the kap value as a function of the system operating conditions. Finally, SO4•- radicals proved to have a higher reactivity to degrade SMT and SMD compared with HO• radicals regardless of the operating conditions of the system.


Asunto(s)
Sulfametoxazol , Contaminantes Químicos del Agua , Teoría Funcional de la Densidad , Peróxido de Hidrógeno , Cinética , Oxidación-Reducción , Fotólisis , Sulfadiazina , Sulfametazina , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...